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Homomonotone Games and Solutions

by
A. Charnes, S. Duffuaa, B. Golany

Abstract

- A new solution concept, the Monocore, for superadditive n-person

cooperative games is introduced. Based on the notion of strong-superadditivity

&

~—

or "homomonotonicity“,'it transforms any superadditive game into a non-empty
core game and then finds a unique imputation in the core of the transformed
game. The Monocore is applied to games in characteristic function form

and in homomollifier form and a way of comparison is suggested. A general
class of Monocore solutions is described and related to some aspects of

Information Theory.

Key Words
Monocore
Homomonotonicity
Homomollifier
Core

Minimum Discrimination Information
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{ 1. Introduction

.;t In a recent paper, [1], we considered deficiencies and advantages

55 connected with the solution concept of the core for n-person superadditive

&, games. There, we suggested the "homocore" as a new solution concept, based

> on the homomollifier notion (see also [2]) and the core idea of stability.

gg The homocore is the product of a process which generates an empty core
" extension from any superadditive really essential game. In the extension

E the value of the grand coalition is raised, so that all the inequalities in

é; the core system can be satisfied. The homocore is obtained as a unique

; imputation based on average values for each player from coalitions in which

ifs he participates and at a level which is last to be satisfied in the above

’Eg system.
{; Here we approach the problem of defining a core-l1ike solution from a

:ES somewhat different direction. We start by defining a per-person super-

E; additivity property which we call " homomonotonicity." The usual super-

additivity property guarantees to any two disjoint coalitions S and T that

;{y they can acquire at least as much by forming the larger coalition SUT as
;Ej by remaining separated. The usual superadditivity property might still

ﬁ; allow a situation in which the average payoff to players in S or T is re-
g54 ‘ duced in the joint coalition. This cannot happen in a "homomonotone" game

~ in which the much stronger property of per-person superadditivity holds.

;’ Some interesting consequences of homomonotonicity are that it implies:

:EE (1) usual superadditivity, (ii) a non-empty core. Homomonotonicity thus
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':-t‘;: is a desirable outcome of a game mapping which would put us in an opposite

":‘ position to that attained in [ 13, where we had a transformation which mapped

::j:: any game into an empty core homomollifier. Here, in section 3, we define a

: transformation which will map any game into a homomonotone game.

Based on the fact that the transformed game has a non-empty core, we

E* define a process which yields a new solution notion for an n-person game

:: which we name "HMonocore." This solution is a unique imputation obtained by

v‘- considering only the two last levels of inequalities in the system which

‘:Z:i: determines the core. This is possible since we prove that it is always

the (n-l)th level in the transformed game which is critical in determining

. the core. We suggest two ways to reach the Monocore solution--via construction

:-;;_ or through solving a quadratic programming problem. We also compare the

: monocore over the original game (N,v) to the monocore derived over the homo-

’: mollifier (N,w) of the game. In section 5, we define a generalized monocore

\ solution starting with any of a class of specifications of the personal contribu-

: tion of each player to the grand coalition.

o -

: 2. Properties of Homomonotonicity

\ Let (N,v ) be a game in characteristic function form where N = il,Z,.,,,n}

: is the set of players and v is a non-negative real valued function defined on

. all the subsets of N with v(B) = 0, x= (X;, X,, ..., X ) be a payoff vector,

S any subset of N withs the cardinality of S. By X(S) we mean _IZ€;X1--

The complement of the game, denoted by v, is defined by v(S) = v(N) - v(N - S)

. and the homomollifier W is given by: w(S) = .~§) v(S) + % v(S). A game is
called "superadditive" if for al1 S, TCN with ST =9, v(S) + v(T)= (SUT).
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< Definition I: A game is "homomonotone" if for every S, T such that SCT, A
{ v(S) = v(T) !
¥y S t ' \
" .
- If each player in a coalition S is sure to receive the average of the ¥
-‘ - . » - - 3 > ‘
A coalition worth v(S), it is clearly to his advantage to join as large a by
.( coalition as possible in a homomonotone game. Thus with respect to ex- :-
- pectation of equal distribution of coalitional worth the grand coalition is -
Z'-_' the coalition most likely to form in a homomonotone game. :
{
Z: Theorem 2.1: A homomonotone game is superadditive.
5
r Proof: considerany, S5 Sos C N with S1 ﬂSZ =¢ . LetT= Slu SZ'
s Then by homomonotonicity we have J_
v(s) o WM sy v ¢
h . S1 t . 52 t '
’ or .(
v S s R
- v(S;) = 1T v(Sy)) = C2w(T) v
t ’ t -
;ﬁ S,%5, .
N Adding the inequalities, v(S;) +v(Sy)) = ——=v(T) = w(T). =
:_ Hence the game is superadditive.
]
4 Q.E.D. >
b* -
f 1
“d T - N
- Theorem 2.2: Every subgame of a homomonotone game is homomonotone. :
: = 2
| Proof: Consider the subgame (T,w) defined by the coalition T(_:_N and all !1
~ -
k. subsets of T with characteristic function values for T and its subsets N
>, 2
a precisely those of the original game. N
-, R
q Consider any pair of subsets S; C S,c 7. 3
[~

“r "y
P

X |
i <

TR \. - .'- ‘q \. * \‘ Y. "\(\.- f\.'_‘-' ‘-\'.-‘,1. AN ."* "l "-"'-



Pd
SN,

(anlls &4 ¢
£ /ﬂ

¢

Al LS
A

&4 s, 'l A 05
"-."A.la.',,l ."A.’ ’

L ] ‘> "
¢l @
ORI

P
(] '5

’Ill
»,rBp

A

g VN

Al
)
elala, 4

a'..; {' );.l
.

}}ﬁﬁ}:
[ ]

'. .~.'.'......l N I’ .l .-

ﬂr.:ﬁ

hY
)ﬁblf.

A
ﬁ&;

Q-

;
PR

o

-,
:

..................... s e PN T T
L » LS - - d e W - - D L
o s ) D RN v J ..

Then  —

So (T, w) is a homomonotone game.
Q.E.D.

Theorem 2.3:

A non-negative homomonotone game has a non-empty core.

Proof: By the homomonotonicity property,

8 < v,y sc

If v(N) = 0 then so is v(S), ¥ SCN, Thus x; =0, i=1,...n
satisfies the core properties. If some v(S)>0,then by the homonotonicity
v(N) > 0.

Since v(i) = 1%51 R Vi €N, choose x; = %-v(N)

Then x(S)& é X; = % v(N) = v(S) by homomonotonicity for all S C N.
n
Also  x(N) = ;;;xi = n--% viN) = y(N).

Hence X7 A %V(N),...,% v(N) ) is in the core.

Q.E.D.

Remark 2.1: Although it might be tempting to think that homomonotonicity

implies convexity of the game (since any convex game has a core), this

is not true, e.g. the following is a homomonotone game which is not convex:

V(l) =1, V(2) =
v(12) = 3 , v(23)
v(123) = 6

’ V(3) =1
4, y(13) = 4

W
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The game is homomonotone since

v(1l2) v{(13) v(123) . < v(12 v(23) v(123) .
"15‘(2"2'2*"2—(7—1'2-3'

v35v§é32 , v(§3) , v(1§3) . v(12) 5V(1§3) , V(%3) _<_V(:1;23) ,

v(23) < v(123)
2 3

But it is not convex: v(12) + v(23) =3 + 4 =7 >v(123) + v(2) = 6%

contradicting v(Sl) + v(Sz):s v(sfy)sz) + v(slf\sz) , ¥ 51’52(;'N’

the convexity property.
Remark 2.2: It might be thought that with the strong increase in

sizes of v(S) with the homomonotonicity property, any homomonotone game

would be essential. However, this is also not true, e.g. the game

v(S) = s defines a homomonotone inessential game.

So far we have discussed some of the properties of a homomonotone
game and now we turn to a process, "homo-transformation," which maps any
game into a homomonotone game.

Definition 2: The homo-transform (N,v') of (N,v) is given by
vi(S) =2 v(s), ¥SCN.

Theorem 2.4: The homo-transform (N,v') of a superadditive game (N,v)

js homomonotone.

Proof: Since (N,v) is a non-negative superadditive game, Vv(S) =v(T), ¥ SCTCN.
s ¥(S) <t v(T)
Hence n s n ot
By definition 2 we get ) < ﬂtﬂ , ¥ SCTCN

i.e. (N,v') is homomonotone,
Q.t.D.



3.

but still we are left with the non-uniqueness of the core.

The Monocore Solution

The transformation in 2.4 guarantees the existence of the core,

The following

construction will always select a unique member of the core set.

formed game v') is

(1)

x1+x2+...

X3+X4+- ..

x1+x2+. .o

X2+X3+...

X1+X2+...

RV AV
< <
- -

2 )

..\Vl

W W W e
<

[}
<._
—
4
~—

The system of inequalities which determine the core (of the trans-

1st level

2nd level

n-2th Tevel

th

n-1 level

} nth level.

From theorem 2.3 we know that this game has a non-empty core, i.e., this

system of inequalities is consistent.

The next lemma shows that in our case, we need to consider just one

level out of the n levels above.

ey,
AN
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2
:i: Lemma: The critical level for (N,v') is the (n-l)th level.

'\ 3 »

s Proof: Let T' be the n-1 player set omitting player i and S} be the jth
x set of k members omitting player i.
- Then

Lt i i n-1
< T 25j ] J = 1’—-'9( k ) )
ﬂQ Note that in this notation each set S of k members has n-1 designations of
I\ .

:::\:j form S;. as may be seen from the incidence matrix of players in k member sets.

By homomonotonicity, {
o i st :
: V(T1) = v J = n-1 4

= s i), v 1

: |
2 <n-1) ) ) ]
! Hence Ak / v(iTh) = 1 Zv(S’-) :
_‘:J- n-l k j J r
3

{ ("'1) : . |

b and kL Yvahzi X Zush = 2K Fus) :
- n-1 T k < : J k =k )

o i i s= ]
' Thus L T owm = LK ) '
o t=n-1 (") s=k 5
o .
-, 1 (1 n-k_1 n-k__ 1 I'
AN and — k— v(T)‘ = = ZV(S) = = ZV(S) . h
.g n-1|n ten-1 n(n;l) k Sk (n-k)(a) k =k J
X ,. L
o0 - ]
o since n("kl) = (n-k)(z) . :

\
' Thus, J

Ny 1)1 Z vin)} = 11 ZV(S) \
- n-1)n 4 k m\&

t‘n'l (k) —k

.

.- Q.E.D.

" Hence, the maximum of (n—fi—) Szkv'(S) occurs when k = n-1.

1) 5=
.:: Q.E.D.

\n
\I
"
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Q
O A T O R R R ER




Now suppose we change all the inequalities in the (n-1)th level to
equalities and solve the sub-system which consists of the last n+l equations
in (1).

We know by theorem 2.3 and the previous lemma that our system has many

inputations in the core. We attain the monocore by the following process:

(i) Let X(i)
Then n
(i) 2R()
i=1

vi(N) - v'(N-i) = v(N) - ﬂﬁl-v(N-i).

n

aV(N) - ";‘—1 Z:lv(N-i) = nV(N) - (n-1)A ,
1:

=

n
where A = — 2 v(N-i) is the average value for characteri
i=1

functions in the (n-l)th level.
n

It is clear that both X(i) > 0 and 2, %(i) = v(N) hold.
i=1

(iii) Since we need x(N) = v(N) for x to be an imputation, we should

scale X(i) "downward" by v(N)/{nv(N) - (n-1)A).

Hence, we define the monocore as:

e - 2=l ven] von
(2) x(1) = Ny - (a-TIA

Theorem 3.1: The monocore of any superadditive (N,v) game always exists, is
unique, and is an imputation in the core of the transformed game (N,v').
Proof: The existence and uniqueness properties are trivially given by the

construction of x(i) above.

.I"l' P e m e st
AR NS 5 SCR KA




For x to be an imputation in the core, we need to prove that

Lii x(S) = v{S), ¥ SCN and x(N) = v(N). By the lemma above, we need to
a2
7 consider only ISI = n-1. Also x(N) = v{N) by construction. So we have only
N
s to prove that:
3 n
_ 2x(3) = v (N-i), ¥ i=l,...,n
:.‘, . j=1
- J#i
N
= Add x(i) to both sides:
g 1 1 (N)
- n- i n- v
‘ V(N) = o V(N-1) + [V(N) - T V(N-1)]m)_ ,
:ﬁ where v"(N) is the denominator in (2).
\3& By the construction v(N) <1, so
z: ¢ PV
;jF
/- n-1 . n-1 V(N
7 - V(N-1) + [V(N) - V(N-1)]V.. i <VvIN).
__ Q.E.D.
Cd
N Next, we notice that x(i) can be written as:
“ _ v(N) - =L v(N-1)
i; (3) x(i) = piv(N) where o, = N = Th-1)A
A "
:2;- and 2o, = 1.
- i=1
[ 4
,;} Recall theorem 2.3 where we used the imputation x(i) = %—v(N). We are
if; now back in a situation where x(i) is expressed as a proportion of v(N).
B, -
o
-y Theorem 3.2: The proportion Py is greater (smaller) than the "uniform"
EI proportion o, = %—, ¥ i, only if v(N-i) = A (v(N-i) =A).
. Proof: Suppose v(N-i) =A. Then:
- vy - Blynei) vy - 2La
. Py = TWNT = (DDA = w(N) - (n-1)A = n 2s asserted.
.
® Similarly, the v(N-i) = A proposition is demonstrated.
- Q.E.D.
"
o
et e e e A" e~ AT A A e A A A A A A A A LA A AT AT AT A

e B & A B . &L & s .
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Our purpose in introducing the proportions P; in (3) becomes clearer by
the next theorem. Here we wish to interpret the monocore solution concept as

an optimal solution to a certain extremal principle.

Theorem 3.3: For 05 given as in (3), the monocore is the solution to the

following quadratic programming problem.
n

. 1 2
Min > %i 0 xi

s
-

n
iji = v(N).
i=1

Proof: Differentiating the Lagrangean, z, and setting it equal to zero,

oz _1 ., . -
57i = o7 X5 = A 0. Hence X; pik

(74 =
oz Zi:x" - v(N) = 0

Hence A= v(N)/; o
i

which implies X; = 5 p; = piv(N).

J Q.E.D.

To see what the monocore is for games without a core, with a unique

core, and with many imputations in the core, consider the following examples.

Example 3.1: An empty core game
V(1) = v(2) = v(3) = 0, v(12) = v(123) = 1, v(13) = 2 , v(23) =

o &

v(S) = % . So nv(N) - (n-1)A = % .

_ 1
Now A-'j'

ISi=2

N YU T N IT R
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Hence the monocore is: _ 2 .471.1
- x(1) = [1-5- §lgg = 512 ?
{ )
- 2.51 1 . .

S x@) = [1- 5 §lgrg= w2 '
l‘ .:
‘ .

. =1-2.7]1.L -

A x(3) = [1-§- 1] 5= 312 )
C )
' Example 3.2: A game with unique core (8L?) .
N v(1) = v(2) = v(3) = v(23) = 0 ; v(12) = v(13) = v(123) = 1. b
{ A= %— and nv(N) - (n-1)A = %-. The monocore turns out to be =
: 3 1 1 :
x(1) = £, x(2) =5, x(3) = 5 . ‘
; This happens to be the "disruption" solution in [2], but this solution ;
- property does not hold in general. E
‘5 Example 3.3: A game with an infinite number of imputations in the core §
{ v(1) = v(2) = v(3) = 0 ; v(12) = v(123) = 1 ; v(13) =5, v(23) = 0 . !
\R 1 :
- A= 5 and nv(N) - (n-1)A = 2. The monocore is A
1 h

x(1) = 3. x(2) = 5, x(3) = § - ,

.‘ I;
X X
':' 4. The tonocore of the Homomollifier ;
[ We suggested in [1] that the homomollifier for each game represents the )
£ .

; conclusion of an implicit bargaining process. We now apply the monocore
; solution concept to the homomollifier. The steps for doing this are :
‘] as follows:
-2 (1) Find the homomollifier w(S) for the given game. G
" (2) Apply the homo-transform defined in 2.4 to get w'(S). E
i (3) Use the construction or the extremal principle to get the monocore )
L solution to the game w(S). E
q

' F N \:_‘-" A N ’!J,"f',» A4 'J".'-"_.( e d‘.'-'.
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The next theorem will show the relation between the monocore of the
homomollifier and the monocore of the original game (N,v).

First, we define a measure of inequality in the distribution of payoffs

as follows:

(4) M = Z[w-x(i)]z

=1~ "

Clearly, for the "uniform" imputation used in theorem 2.3, this measure
is zero. More generally, for any solution concept this measure describes

the amount of dispersion in payoffs of the group players.

Theorem 4.1: The dispersion measure M is always smaller for the monocore

of the homomollifier game (N,w) than for the monocore of the original

game (N,v).

Proof: W.1.0.g. we will prove the theorem for games in 0-1 normalization,

since any superadditive game in characteristic function form is strategically
equivalent to such a game. Let Mv’ Mw be the respective measures for (N,v)
and (N,w). Then

n 2 v(N)- v(N i)
T ) =>:[v(~> i) J ]

~ n n n-1
i=1 v(N) -

n-1

(-2 zn: viN-1) - A 12
sy - L

. 2 n
Similarly M = (n-1) v_(N {W(N" - 5_] , where A %EW(N-” .
i=1 A i=1

> 9 e v,
. ot e

y v v
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Now  w(N-i) = 2k (vin)-v(i)) + Eun-i) = L lveni) + v(i) -]+ v

n n
and A = %-;Eiw(N-i) = %-[A +a - v(N)] + v(N) where a = %-sgiv(i).
) Hence,
[w(N-1) - K ]2 = lf[(v(N-'i) - A) + (v(i) - a)]z.
’ n
Further, the denominator of Mw is given by
h MO S N OV = P PP | iz- [(2n-1)v(N) - (n-1)(A+a)].

In the 0-1 normalization, v(i) = 0, ¥ i , hence a = 0. Thus we have for the

.th .
i term in Mw

2
v(N-i) - A
(2n-1)v(N) - (n-1)A
To complete the proof we only need to show that

(2n-1)v(N) - (n-1)A = v(N) - ﬂ-:l-A » which is easy to see by collecting
n

terms.
Q.E.D.

Let us now compare the monocore solutions for the homomollifiers of our

examples 3.1 to 3.3:

Example 4.1: The game (N,v) is as in 3.1. The homomollifier is

: w(12) = 1, w(13) = % , w(23) = i—g , w(123) = 1. Then & = {—7 and the
monocore 1is: B - Edlé

- 3’181 _ 11

D =l—717 |33
1 - 318
1 - 2,177

1.217|3°%
= §m~

SRS
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X(3)= 31 l:—_g_.
(21|37 %
318
2 2

Here Mw = 900 - 0.0022 while Mv = 143 = 0.0138. Clearly, the monocore over

the homomollifier has a much more uniform distribution of payoffs.

Example 4.2: The game (N,v) is as in 3.2. The homomollifier is

w(12) = w(13) = w(123) = 1 , w(23) = % . Then & =% , and the monocore
is: -1 S22
(1) = 33| 1_15
128 | 3°:
L 394
1-2.]
x(2) = 3 l: __9_
.28 3™ ™
|1 -39
x(3) = 5

Here Mw = 0.0220 while Mv = 0.1066.

Example 4.3: The game is that of 3.3. The homomollifier is w(12) = 1,

w(13) = 2, w(23) = ¢ , w(123) = 1. Then & = 2 and the monocore is:

(1 .24

X(l) = 3 6 1 = 10
1 - 2513 22
1- 3%
[1.25]

X(Z) = ! 3.6 l= 8
T 25|37 =
1- 5%
1-24

x(3) = 3 1 = 6
L 36

Again Mw = 0.0138 < Mv = 0.055.
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5. A Class of Monocore Solutions

In this section, we define another simple extremal principle which

yields as a special case the monocore solution of the previous section. We

use the well-known notion of Minimum Discrimination Information (see e.g. [3],

[41).
.th

Let Z, be any strictly positive measure of the i

player's contribution

to the grand coalition. A "generalized" monocore is then the solution to the

following non-linear (goal) programming problem with the z, as goals:

n X
Min ¢ = }E:xi ln-il
i=1 i

(5)

n
2:x1 = v(N) .
i=1

Still more generally, we may impose additional constraints.

i v(N).

n
Z.
j=1 !

Lemma: The explicit solution to (5) is X; =

Proof: Differentiating the Lagrangean, E, of (5) and setting it to zero,

~ X. Z.
1
(6) L=t + x, =L == + 1 =0
axi Z,i 1 i Z'i
. n
ac _ _ =
(7) % 1_z=:1x1. v(N) 0

n n
From (6), we get x, = zie'(1+x) and Lox. = eI,

j=1 ! j=1 "
. %
Using (7), we conclude X; = f;; v(N).

Q.E.D.
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;;E Remark 5.1: Notice that if we choose z, = v(N) - Qﬁl v(N-i) as a measure of
t the ith player's contribution to the grand coalition, the generalized monocore
w0 is the monocore of our construction in §3.
ijt
N '
b, Remark 5.2: °If instead we choose
A
N
I—;I z; = Z w(sS) - %—:—i- Zw(S) , where k is such that
xS |S|=k |S|=k
j€S
o
= max i ZW(S) - Ll Z w(s) ,
= S n-1 S n-l) ST=k
) ISl<n (j5-1) IS k-1/ 151=
N the generalized monocore is precisely the homocore of [1].
I:.':Zj
s
\.f:'
- 6. Conclusion
{
x> A new unique core-like concept of solution for n-person games is
}iﬁ defined based on a new property called the homomonotonicity. This
T solution is called the monocore and it is based on a simple game mapping
7
oY which will map any n-person superadditive game into a homomonotone game.
o
%2: Every homomonotone game has a non-empty core.
¢
I This solution concept conforms to the idea that the homomollifier
$$ represents an implicit bargaining process. Also this concept of solution !
'\-
jf is characterized by an extremal principle from which a generalized
,:% monocore solution is proposed.
e Further research will study different transformations of games
;2; to attain homomonotone games and their effect on this concept of solution.
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